Ma

Mathematics tests

KEY STAGE Mark scheme for Paper 1
Tiers 3-5, 4-6, 5-7 and 6-8

National curriculum assessments

Introduction

This booklet contains the mark scheme for paper 1 at all tiers. The paper 2 mark scheme is printed in a separate booklet. Questions have been given names so that each one has a unique identifier irrespective of tier.

The structure of the mark schemes

The marking information for each question is set out in the form of tables, which start on page 10 of this booklet. The columns on the left-hand side of each table provide a quick reference to the tier, question number, question part and the total number of marks available for that question part.

The 'Correct response' column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative

■ examples of some different types of correct response, including the most common.

The 'Additional guidance' column indicates alternative acceptable responses, and provides details of specific types of response that are unacceptable. Other guidance, such as when 'follow-through' is allowed, is provided as necessary.

Questions with a Using and applying mathematics (UAM) element are identified in the mark scheme by the symbol U1. The number indicates the significance of using and applying mathematics in answering the question. The U number can be any whole number from 1 to the number of marks in the question.

For graphical and diagrammatic responses, including those in which judgements on accuracy are required, marking overlays have been provided as the centre pages of this booklet.

The 2009 key stage 3 mathematics tests and mark schemes were developed by the Test Development Team at Pearson Research and Assessment.

General guidance

Using the mark schemes

Answers that are numerically equivalent or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed on the following two pages with the prescribed correct action. This is followed by further guidance relating specifically to the marking of questions that involve money, negative numbers, time, measures, coordinates, probability or algebra. Unless otherwise specified in the mark scheme, markers should apply the following guidelines in all cases.

Recording marks awarded on the test paper

All questions, even those not attempted by the pupil, should be marked, with a 1 or a 0 entered in each marking space. Where 2 m can be split into 1 m gained and 1 m lost, with no explicit order, then this will be recorded by the marker as 1
The total marks awarded for a double page should be written in the box at the bottom of the right-hand page, and the total number of marks obtained on the paper should be recorded on the front of the test paper.

A total of 120 marks is available in each of tiers 3-5, 4-6, 5-7 and 6-8.

Awarding levels

The sum of the marks gained on paper 1, paper 2 and the mental mathematics paper determines the level awarded. Level threshold tables, which show the mark ranges for the award of different levels, will be available on the NAA website www.naa.org.uk/tests from April 2009.

What if...

The pupil's response is numerically or algebraically equivalent to the answer in the mark scheme.

The pupil's response does not match closely any of the examples given.

The pupil has responded in a non-standard way.

There appears to be a misreading affecting the working.

No answer is given in the expected place, but the correct answer is given elsewhere.

The final answer is wrong, but the correct answer is shown in the working.

The pupil's answer is correct but the wrong working is shown.

Marking procedure

Markers should award the mark unless the mark scheme states otherwise.

Markers should use their judgement in deciding whether the response corresponds with the statement of the requirements given in the 'Correct response' column. Refer also to the 'Additional guidance'.

Calculations, formulae and written responses do not have to be set out in any particular format. Pupils may provide evidence in any form as long as its meaning can be understood. Diagrams, symbols or words are acceptable for explanations or for indicating a response. Any correct method of setting out working, however idiosyncratic, should be accepted. Provided there is no ambiguity, condone the continental practice of using a comma for a decimal point.

This is when the pupil misreads the information given in the question and uses different information without altering the original intention or difficulty level of the question. For each misread that occurs, deduct one mark only.

Where a pupil has shown understanding of the question, the mark(s) should be given. In particular, where a word or number response is expected, a pupil may meet the requirement by annotating a graph or labelling a diagram elsewhere in the question.

Where appropriate, detailed guidance will be given in the mark scheme and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether:

- the incorrect answer is due to a transcription error If so, award the mark.
- in questions not testing accuracy, the correct If so, award the mark. answer has been given but then rounded or truncated
- the pupil has continued to give redundant extra working which does not contradict work already done
- the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done.

If so, award the mark.

If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.

A correct response should always be marked as correct unless the mark scheme states otherwise.

What if...

The pupil has made a conceptual error.

The correct response has been crossed or rubbed out and not replaced.

More than one answer is given.

The pupil's answer correctly follows through from earlier incorrect work.

The answer is correct but, in a later part of the question, the pupil has contradicted this response.

The pupil's accuracy is marginal according to the overlay provided.

The pupil has drawn lines which do not meet at the correct point.

Marking procedure

In some questions, a method mark is available provided the pupil has made a computational, rather than conceptual, error. A computational error is a 'slip' such as writing $4 \times 6=18$ in an otherwise correct long multiplication. A conceptual error is a more serious misunderstanding of the relevant mathematics; when such an error is seen, no method marks may be awarded. Examples of conceptual errors are:

- misunderstanding of place value, such as multiplying by 2 rather than 20 when calculating 35×27
- subtracting the smaller value from the larger in calculations such as $45-26$ to give the answer 21
- incorrect signs when working with negative numbers.

Any legible crossed or rubbed out work that has not been replaced should be marked according to the mark scheme. If the work is replaced, then crossed or rubbed out work should not be considered.

If all answers given are correct (or a range of answers is given, all of which are correct), the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.

Follow-through marks may be awarded only when specifically stated in the mark scheme, but should not be allowed if the difficulty level of the question has been lowered. Either the correct response or an acceptable follow-through response should be marked as correct.

A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.

Overlays can never be 100\% accurate. However, provided the answer is within or touches the boundaries given, the mark(s) should be awarded.

Markers should interpret the phrase 'lines not accurate' to mean meeting within or on a circle of radius 2 mm with centre at the correct point.

within the circle accepted

on the circle accepted

outside the circle not accepted

Responses involving money

	\checkmark Accept	x	Do not accept
Where the $£$ sign is given for example: £3.20, £7	\checkmark £3.20 £7 £7.00 Any unambiguous indication of the correct amount, eg £3.20p £3 20 pence £3 20 £3,20 £3-20 £3:20 320p with $£$ sign crossed out	x	Incorrect placement of pounds or pence, eg $\begin{aligned} & \text { £320 } \\ & \text { £320p } \end{aligned}$ Incorrect placement of decimal point, or incorrect use or omission of 0 , eg £3.2 £3 200 £32 0 £3-2-0
Where the p sign is given for example: 40p	\checkmark 40p Any unambiguous indication of the correct amount, eg £0.40p f.40p $£ 0.40$ with p sign crossed out	x	Incorrect or ambiguous use of pounds or pence, eg 0.40p $£ 40 p$
Where no sign is given for example: £3.20, 40p	$\checkmark \quad £ 3.20$ 320p 40p £0.40 Any unambiguous indication of the correct amount in $£$ or p as shown above At levels 3 and 4 only also accept omission of units, eg 3.20 320 40 0.40	x	Omission of final zero, eg 3.2 0.4

Responses involving negative numbers

\checkmark Accept	\timesDo not accept		
For example:			
-2		\quad	To avoid penalising the error below
:---			
more than once within each question,			
do not award the mark for the first			
occurence of the error within each			
question. Where a question part carries			
more than one mark, only the final mark			
should be withheld.			

Responses involving time

	\checkmark Accept	\times Do not accept
A time interval for example: 2 hours 30 minutes	$\checkmark 2$ hours 30 minutes Any unambiguous, correct indication, eg $2 \frac{1}{2}$ hours 2.5 hours 2h 30 2h 30 min 230 Digital electronic time, ie 2:30	x Incorrect or ambiguous time interval, ```eg 2.3 hours 2.3h 2h 3 2.30 min 2.30 2-30 2,30 2.3```
A specific time for example: 8:40am, 17:20	\checkmark 8:40am 8:40 twenty to nine Any unambiguous, correct indication, eg 08.40 8.40 0840 840 8-40 8,40 Unambiguous change to 12 or 24 hour clock, eg $17: 20$ as $5: 20$ pm or $17: 20$ pm	x Incorrect time, eg 8.4am 8.40pm Incorrect placement of separators, spaces, etc or incorrect use or omission of 0, eg 840 8:4:0 8.4 084 84

Responses involving measures

	\checkmark Accept	\times Do not accept
Where units are given (eg kg, m, l) for example: 8.6 kg	8.6 kg Any unambiguous indication of the correct measurement, eg 8.60 kg 8.6000 kg 8 kg 600 g	x Incorrect or ambiguous use of units, eg 8600 kg

Note

If a pupil leaves the answer box empty but writes the answer elsewhere on the page, then that answer must be consistent with the units given in the answer box and the conditions listed above.

If a pupil changes the unit given in the answer box, then their answer must be equivalent to the correct answer, using the unit they have chosen, unless otherwise indicated in the mark scheme.

Responses involving coordinates

	\checkmark Accept	x Do not accept
For example: $(5,7)$	\checkmark Unconventional notation, eg $(05,07)$ (five, seven) $\begin{aligned} & x \text { y } \\ & (5,7) \\ & (x=5, y=7) \end{aligned}$	x Incorrect or ambiguous notation, eg $\begin{aligned} & (7,5) \\ & y x \\ & (7,5) \\ & (5 x, 7 y) \\ & \left(5^{x}, 7^{y}\right) \\ & (x-5, y-7) \end{aligned}$

Responses involving probability

Responses involving the use of algebra

	\checkmark Accept	!	Take care \times Do not accept
For example: $2+n$	\checkmark Unambiguous use of a different case or variable, eg N used for n x used for n	!	Unconventional notation, eg $n \times 2$, or $2 \times n$, or $n 2$ or $n+n$ for $2 n$ $n \times n$ for n^{2}
$2 n$			$\begin{aligned} & n \times n \text { for } n^{2} \\ & n \div 2 \text { for } \frac{n}{2} \text { or } \frac{1}{2} n \end{aligned}$
$\frac{n}{2}$			$2+1 n \text { for } 2+n$
			$2+0 n$ for 2
n^{2}			Within a question that demands simplification, do not accept as part of a final answer involving algebra. Accept within a method when awarding partial credit, or within an explanation or general working.
		x	Embedded values given when solving equations, eg in solving $3 x+2=32$, $3 \times 10+2=32$ for $x=10$
			To avoid penalising the two types of error below more than once within each question, do not award the mark for the first occurrence of each type within each question. Where a question part carries more than one mark, only the final mark should be withheld.
	\checkmark Words used to precede or follow equations or expressions, eg $t=n+2$ tiles or tiles $=t=n+2$ for $t=n+2$!	Words or units used within equations or expressions, eg n tiles +2 $n \mathrm{~cm}+2$
			Do not accept on their own. Ignore if accompanying an acceptable response.
	\checkmark Unambiguous letters used to indicate expressions, eg $t=n+2 \text { for } n+2$	\times	Ambiguous letters used to indicate expressions, eg $n=n+2 \text { for } n+2$

Tier \& Question		
$3-5$	$4-6$	$5-7$
$\mathbf{1}$		

Mark Correct response

2m
Completes the diagram correctly, ie

or
1m
Gives two correct values
U1

Circle totals

Additional guidance

! For 1m, follow-through from their 25 Accept follow-through for their 30 as 55 - their 25

Tier \& Question				
3-5 $4-6$	$5-7$	$6-8$		
$\mathbf{4}$		Mark	Correct response	Additional guidance
a		$\mathbf{1 m}$	16 to 18 inclusive	
b		$\mathbf{1 m}$	$\mathbf{4}$	
c			$\mathbf{1 m}$	17 to 19 inclusive

1m
Gives four of the digits to make a correct calculation eg

- $7+8=15$
- $5+6=11$
- $9+9=18$

1 m Gives four of the digits to make a correct calculation eg

- $6 \times 7=42$
- $7 \times 5=35$
- $9 \times 9=81$
$1 m$
Gives five of the digits to make a correct calculation eg
- $23-4=19$
- $67-5=62$
- $24-2=22$

1 m Gives four of the digits to make a correct calculation eg

- $14 \div 2=7$
- $24 \div 4=6$
- $36 \div 6=6$

Mark Correct response

- $9 \times 9=81$
-

Digit cards

Tier \& Question
$\begin{array}{ccc}3-5 & 4-6 & 5-7 \\ 6 & 6-8\end{array}$
a

a	

Mark
1 m

Correct response
Indicates 1.8 metres, ie
$\square=$
Indicates 7 metres, ie
$-\longrightarrow=$

Mark	Correct response
$\mathbf{1 m}$	$\div 10$
1 m	$\div 10 \longrightarrow-10$
1 m	$+10 \longrightarrow \div 10$

Additional guidance

! Correct operation indicated, but 10 omitted

 eg, for the first mark- -

Penalise only the first occurrence

Tier \& Question			
$3-5$	$4-6$	$5-7$	$6-8$
12	5		

125

-

-

-

Rhombus grid Additional guidance
! Lines not ruled or accurate, or triangle not shaded
Accept provided the pupil's intention is clear
! Vertices of triangle not on the intersections of the grid
Accept vertices within 2 mm of the intersections of the grid

! Other shapes drawn

As these may be trials, ignore

- $-\quad$ -

Mark Correct response

1m Completes the second calculation correctly, ie

1m Completes the third calculation correctly, ie

or

or

a	a	1 m	10 am
b	b	1 m	6 pm

Tier \& Question			
a-5	$4-6$	$5-7$	
14	7		

Missing digits

Additional guidance

! Both digits placed in the same box

eg

Clocks

Additional guidance

! Indication of am or pm incorrect or omitted
Condone omission of am or pm but do not accept incorrect times
eg, for part (a) accept

- 10 (o'clock)
eg, for part (a) do not accept
- 10pm
- 22:00
eg, for part (b) accept
- 6 (o'clock)
- 18:00
eg, for part (b) do not accept
- bam
- 06:00

Tier \& Question			
$\begin{array}{c\|c} 3-5 & 4-6 \\ 15 & 8 \end{array}$	5-7 6-8	Mark	Correct response
		1 m	Indicates Set A and gives a correct explanation eg - $A=74$ and $80-74=6$ $B=90$ and $90-80=10$ - A is $-3,-2,-1,(0)$ and B is $+1,+2,+3,+4$, so A is only 6 less than 80 , but B is 10 more

Sum of 80

Mark Correct response

Indicates Set A
and
gives a correct explanation
,
$B=90$ and $90-80=10$

- A is $-3,-2,-1,(0)$ and B is $+1,+2,+3,+4$, so A is only 6 less than 80 , but B is 10 more

Additional guidance

\checkmark Minimally acceptable explanation

eg

- 6 and 10 seen
- 74 and 90 seen
- $(-) 3,(-) 2,(-) 1,(0)$ and $1,2,3,4$ seen
x Incomplete or incorrect explanation eg
- A adds up to 74
- B is 10 more than 80
- A adds up to $74, B$ adds up to 110
- 17,18 and 19 are all under 20 so A is smaller

| a | a | $1 m$ |
| :---: | :---: | :---: | :---: |
| b | b | $1 m$ |

Gives the values 14 and 41 in the correct positions
Shows a correct rule
eg

- $\times 3$
- Multiply by 3
- Triple
- $\times 3$ then +0

Number chains

Additional guidance

\checkmark Minimally acceptable rule

eg

- Add the number 3 times
- Add on double itself
- Double then add the number
- It's the next power of 3
- $3 x$

! Rule embedded or shown in working

Accept provided a correct rule is shown explicitly, even if an incorrect value for the next number in the chain is shown on the answer line
eg, accept

- 81×3 seen
- $(4-1) \times 81$
eg, do not accept
- $81+81+81$
- $81 \times 2+81$
x Incomplete or incorrect rule
eg
- 3
- +54
- $3 n$

Tier \& Question				
$3-5$	$4-6$	$5-7$	$6-8$	
18	$\mathbf{1 1}$	$\mathbf{2}$		Mark
a	a	a	$\mathbf{1 m}$	$\frac{1}{5}$ or equivalent probability
b	b	b	$\mathbf{1 m}$	$\frac{2}{3}$ or equivalent probability
c	c	c	$\mathbf{1 m}$	$\frac{1}{3}$ or equivalent probability

T-shirts

Additional guidance

! Value rounded

Accept $0.66(\ldots$.) or 0.67 or the percentage equivalents

! Value rounded

Accept $0.33(\ldots)$ or the percentage equivalent

Mark	Correct response	Additional guidance Water
1 m	Indicates the value 500 on the jug, ie	\checkmark Unambiguous indication
		! Inaccurate indication Accept provided the pupil's intention is clear

Tier \& Question			
$3-5$	$4-6$	$5-7$	$6-8$
20	13	4	

Mark	Correct response
$\mathbf{2 m}$	90
or	
$\mathbf{1 m}$	Shows or implies a complete correct method with not more than one computational error
	eg
	- $72 \div 4=16$ (error) $72+16=88$ (1)

Boxes

Additional guidance
(

Tier \& Question					
$3-5$	$4-6$	$5-7$	b-8		
21	a	$\mathbf{5}$		Mark	Correct response
a	a	a	$1 \mathbf{m}$	18	
b	b	b	$1 \mathbf{m}$	54	

Percentages

$21 \quad 145$

b b
m 54

Additional guidance

! Throughout the question, incorrect use of \% sign
eg

- 18%

54\%
Penalise only the first occurrence
! For part (b) follow-through
Accept follow-through as their (a) $\times 3$, or as
$36+$ their (a) provided the result is less than 360

Mark Correct response

1m Completes the first grid correctly, ie

1 m Completes the second grid correctly, ie

Number grids

Additional guidance

Tier \& Question			
$3-5$	$4-6$	$5-7$	$6-8$
$\mathbf{2 3}$	$\mathbf{1 6}$	$\mathbf{7}$	

Mark Correct response
$3 m$ Gives all three correct angles, ie
$x=90$
$y=20$
$z=20$
or
2m Gives any two correct angles or

Gives $x=90$ and $y=z$, provided this value is
<90 and >0
or
1m Gives any one correct angle
or
Gives $y=z$, provided this value is <90 and >0

\square

Mark Correct response

2
or
1 m Shows or implies that $\mathrm{a}=5$ and shows the intention to substitute this value into the second equation
eg

- $5+7=10+b$
- $b=12-10$
or
Shows a complete correct method with not more than one computational error
eg
- $b=11-6+7-10$
- $a=11-6=6$ (error)
$6+7=10+b$
$b=3$

Additional guidance

x Conceptual error
eg

- $a=11+6=17$

Additional guidance

x Instruction on the left matched to more than one instruction on the right

Mark Correct response

Gives a correct reason from one of the five categories below that states or implies the problem, or suggests an improvement

The most common correct reasons:

Category 1: Refer to the number of leaves in the sample being too small
eg, problem

- The sample is too small
- Those 10 leaves might all be diseased
eg, improvement
- They should pick more than 10

Category 2: Refer to the number of trees in the sample being too small
eg, problem

- One oak tree might be different from others
- May be something wrong with that tree
eg, improvement
- They should use more than one tree

Category 3: Refer to the conditions in which the tree is growing being too uniform
eg, problem

- Different conditions may affect the leaves on other trees
- The soil might be very bad in that area
eg, improvement
- They should choose trees in different areas

Category 4: Refer to the area of the tree from which the leaves are picked being too small
eg, problem

- The leaves on higher branches might be different
- Those branches may not get enough light
eg, improvement
- They need leaves from all over the tree

Category 5: Refer to the period for picking the sample being too short
eg, problem

- The leaves may be different at different times of year
- It may be winter
eg, improvement
- They should collect throughout the year

1m Gives a correct reason from a different category from one already credited

Tier \& Q	Question		
$\begin{array}{rr} 3-5 & 4-6 \\ & 20 \end{array}$	$\begin{array}{ll} 5-7 & 6-8 \\ 11 & 3 \end{array}$	Mark	Correct response
		2m or 1m	Gives both correct lengths, ie $x=10 \text { and } y=3.9 \text { or equivalent }$ Gives $y=3.9$ or equivalent or Gives the two values transposed, ie $x=3.9 \text { or equivalent and } y=10$ or Shows a complete correct method with not more than one computational error eg - $x=10,10-6.1=4.9$ (error) - $4 \times 6.1=24.4,40-24.4=16.6$ (error) $16.6 \div 4=4.15,4.15+6.1=10.25$ - $40 \div 4=20$ (error) $20-6.1=13.9$

Missing lengths

 Additional guidance- $4 \times 6.1=24.4,40-24.4=16.6$ (error)
$16.6 \div 4=4.15,4.15+6.1=10.25$
$40 \div 4=20$ (error) $20-6.1=13.9$

Tier \& Question					
$3-5$ $4-6$ 23	5-7 14	6-8	Mark	Correct response	Additional guidance Correlation
a	a	a	1 m	Indicates B and gives a correct explanation The most common correct explanations: Refer to the 'slope' or 'gradient' of the points eg - The points make a pattern that is sloping upwards from left to right - The line of best fit would have a positive gradient Describe the relationship between the two variables eg - As the value on the x-axis increases, so does the value on the y-axis	\checkmark Minimally acceptable explanation eg - It slopes upwards - It goes up - It's like this x Incomplete explanation eg - It slopes the positive way \checkmark Minimally acceptable explanation eg - As one amount gets bigger, so does the other - It could be the higher the temperature, the more ice creams are sold x Incomplete explanation eg - They both increase - It goes from the left-hand corner - It is slanted towards the right
b	b	b	1 m	Indicates A and gives a correct explanation The most common correct explanations: Refer to the points being closer to a line of best fit eg - The points are practically in a straight line, so the correlation is very strong - If you drew the line of best fit, the points in A would all be close to it but many would be further away in B Refer to the 'line' or sloping pattern being clearer to see eg - You can see the pattern of a very clear, almost straight line - In B you can see a pattern sloping upward, but it's not as clear	\checkmark Minimally acceptable explanation eg - They are closer to one line - In B they are less bunched together in a line x Incomplete explanation eg - The points are closer together - In B they are more spread out \checkmark Minimally acceptable explanation eg - They are in a straight line - The pattern sloping downwards is clear - In B the line is less easy to see - B's points are sloping upwards, but not as definitely as in A x Incomplete explanation eg - The pattern is clearer - They are in a line

Tier \& Question					Additional guidance Expressions
$\begin{array}{rr} 3-5 & 4-6 \\ & 26 \end{array}$	$\begin{aligned} & 5-7 \\ & 17 \end{aligned}$	$\begin{gathered} 6-8 \\ 9 \end{gathered}$	Mark	Correct response	
a	a	a	1m	Indicates $2 n$ must be even and gives a correct explanation eg - Any whole number multiplied by two gives a number in the two times table, so is even - Odd $\times 2=$ even, even $\times 2=$ even - $2 \times$ odd is odd + odd $=$ even $2 \times$ even is even + even $=$ even - All multiples of 2 are even - Halving an odd number does not give a whole number	\checkmark Minimally acceptable explanation eg - $\times 2$ gives even - Doubling any number gives even - All the numbers in the 2 times table are even x Incomplete explanation eg - $2 \times 1=2$ which is even, and $2 \times 2=4$ which is also even - Even \times even is even Even \times odd is even - Because when you add two odd numbers together you always make an even - Because 2 is even
b	b	b	1 m	Indicates $3 n$ could be odd or even and gives a correct explanation eg - $3 \times 1=3$ which is odd, but $3 \times 2=6$ which is even - Odd $\times 3=$ odd, even $\times 3=$ even - Multiples of 3 can be odd or even - An even or odd number can have a factor of 3	\checkmark Minimally acceptable explanation eg - $3 \times 1=3,3 \times 2=6$ - If n is 5 you get odd, if n is 6 , you get even - $3 \times$ some numbers $=$ odd, but $3 \times$ some numbers $=$ even - Because 3 goes into both odd and even numbers - In the 3 times table there are odd and even numbers x Incomplete explanation eg - $3 n$ is sometimes odd and sometimes even - Even \times odd gives even odd \times odd gives odd - $3,6,9,12,15 \ldots$...

Tier \& Question				
$\begin{array}{rr} 3-5 & 4-6 \\ & 28 \end{array}$	$\begin{aligned} & 5-7 \\ & 19 \end{aligned}$	$\begin{aligned} & 6-8 \\ & 11 \end{aligned}$	Mark	Correct response
			1 m	Gives a correct justification that the difference between 3^{2} and 3^{3} is 18 eg - $3^{2}=9,3^{3}=27$, and $27-9=18$ - $3^{3}-3^{2}=3^{2}(3-1)$ $\begin{aligned} & =9 \times 2 \\ & =18 \end{aligned}$

Powers

Additional guidance

\checkmark Minimally acceptable justification
eg

- $27-9$
- $9+18=27$
x Incomplete or incorrect justification eg
- $3^{2}=9,3^{3}=27$
- $3^{3}-3^{2}=18$
- $9-27=18$

Mark

Correct response

Identifies a value, n, such that n is prime, and shows
that $2 n+1$ is not prime to demonstrate
that the statement is incorrect
eg

- 7 is a prime number, but $2 \times 7+1=15$, and 15 is not a prime number
- 13 is prime, but 27 is not

Sorting primes

Additional guidance

\checkmark Minimally acceptable response

eg

- 7, 15
- $2 \times 13+1=27$

x Incomplete or incorrect response

eg

- $2 \times n$ is even, even +1 is odd and not all odd numbers are prime

! More than one example given

Accept provided a counter example is clearly identified
eg, accept

- 11 gives 23

13 gives 27 so this one
eg, do not accept

- 11 gives 23 13 gives 27

Markers may find the following list of correct examples helpful ($n<100$):

n	$2 n+1$
7	15
13	27
17	35
19	39
31	63
37	75
43	87
47	95
59	119
61	123
67	135
71	143
73	147
79	159
97	195

Tier \& Questio				
$\begin{array}{\|r\|r\|} 3-5 & 4-6 \\ & 5-7 \\ & 21 \end{array}$	$\begin{aligned} & 6-8 \\ & 13 \end{aligned}$	Mark	Correct response	Additional guidance Score
a	a	2m or 1m	11 Shows the values 56 and 45 or Gives an answer of 9 [the points gained in round 5]	
b	b	1m	Gives a response that states or implies that Derek gained the same number of points in each round eg - He got the same number of points in each round - To keep the gradient the same, an equal number needs to be added each time - For every round going across, the line must have gone up the graph in equal steps	\checkmark Minimally acceptable response eg - Same - Equal - No change - The total increases by the same number in each round - He gained 10 points each round x Incomplete or incorrect response eg - He gets about the same number of points in each round - It increases by the same number in each round - His points were consistent - A steady increase - He gets maximum points each round - The line could be horizontal

Rhombus

2m
or
1m
computational error
The most common correct methods:

Calculate the area of the rhombus as half the area of the rectangle
-
$\frac{1}{2}(6 \times 8)$

- $48 \div 2$

Work with 2 or 4 triangles
eg
there are 4 little triangles so $\times 4$

- $(6 \times 4) \div 2=14$ (error), $14 \times 2=28$
- 8 triangles altogether, so one is $48 \div 8=7$ (error), 4 shaded so $4 \times 7=28$
- Area of rectangle: $6 \times 8=48$,

Area of white triangle: $\frac{1}{2} \times 3 \times 4=6$
$4 \times 6=18$ (error), answer 30
Shows the correct unit for their area or method eg

- $2400 \mathrm{~mm}^{2}$

x Conceptual error

eg

- Area of triangle given as base \times height

! Area incorrect or omitted, but units given

If the mark(s) for the correct area have not been awarded, condone cm^{2} seen for the third mark

Tier \& Question			Mark	Correct response
3-5 4-6		$\begin{aligned} & 6-8 \\ & 15 \end{aligned}$		
	a	a	1 m	Gives a pair of values with a negative sum and a positive product, ie where a and b are both negative eg - -2 and -1 - -9 and -10 - -0.5 and $-\frac{2}{5}$ - -3 and -3
	b	b	1 m	Gives a pair of values with a positive sum and a negative product, ie where a is positive, b is negative and $\|a\|>\|b\|$ eg - 2 and -1 - -9 and 10 - 0.5 and $-\frac{2}{5}$

Sums and products

Additional guidance

(

Simultaneous

Additional guidance

\mathbf{x} Method used is trial and improvement

Tier \& Question			
$3-5$	$4-6$	$5-7$	$6-8$
		$\mathbf{2 8}$	$\mathbf{2 0}$

or
1m Shows a complete correct method with not more than one computational error when substituting values
eg

- If $j=2$ and $k=3$
$(j+k)^{2}=(2+3)^{2}=20$ (error),
$j^{2}+k^{2}=4+9=13$
or
Shows or implies the four correct terms resulting from multiplying out the brackets, even if there is incorrect further working
eg
U1
- $j^{2}, j k, j k, k^{2}$
- $j \times j+j \times k+j \times k+k \times k$

1m
Gives a correct counter example eg

- $j=0$
- $k=0$
- Either j or k is zero

U1

- Both j and k are zero
- It doesn't work if k is nought

False (cont)

Additional guidance

x Conceptual error eg

- $3^{2}=6$

2m
or

1m Shows or implies the number of possible outcomes
$\frac{3}{4}$ or equivalent probability
Shows or implies the number of pos
where the product is a multiple of 3
eg
-

\times	3	4	5	6
3	$\underline{9}$	$\underline{12}$	$\underline{15}$	$\underline{18}$
4	$\underline{12}$	16	20	$\underline{24}$
5	$\underline{15}$	20	25	$\underline{30}$
6	$\underline{18}$	$\underline{24}$	$\underline{30}$	$\underline{36}$

-

	3	4	5	6
3	\checkmark	\checkmark	\checkmark	\checkmark
4	\checkmark			\checkmark
5	\checkmark			\checkmark
6	\checkmark	\checkmark	\checkmark	\checkmark

- $3 \times 3,3 \times 4,3 \times 5,3 \times 6$,
$4 \times 3,4 \times 6$,
$5 \times 3,5 \times 6$,
$6 \times 3,6 \times 4,6 \times 5,6 \times 6$
or
Shows a complete correct method but makes not more than two errors in identifying multiples of 3 , more than two errors in identifying multiples of 3 ,
then follows through to give their correct probability
-

\times	3	4	5	6
3	$\underline{9}$	$\underline{12}$	$\underline{15}$	$\underline{18}$
4	$\underline{12}$	16	20	$\underline{24}$
5	15	20	25	$\underline{30}$
6	$\underline{18}$	$\underline{24}$	$\underline{30}$	$\underline{36}$

$$
\text { so } \frac{11}{16}
$$

22 Mark Correct response
2m Gives $y=20$
and
shows or implies a correct first step of algebraic
manipulation that either removes the denominator or removes the brackets
eg

- $5(3 y-4)=14 y$
- $5(3 y-4)=2 y \times 7$
- $\frac{15 y-20}{2 y}=7$
- $\frac{5 \times 3 y-5 \times 4}{2 y}=7$
- $15 y-20=14 y$
- $y-20=0$
or
1m Shows or implies a correct first step of algebraic manipulation that either removes the denominator or removes the brackets, even if there are other errors

2m Gives $x=5$ and $x=-5$, in either order and
shows or implies the correct expansion of $(x+4)(x-4)$
eg

- $x^{2}+4 x-4 x-16$

- $x^{2}-16$
- $x^{2}=25$
or
1 m Shows or implies the correct expansion of $(x+4)(x-4)$, even if there are other errors

1m Shows or implies the values 19, 25, 28 and 29 eg

- Fulfils condition 1 only
- Marks the points $(1.5,19)$, $(2.5,25)$, $(3.5,28)$ and $(4.5,29)$ [ie uses midpoints of each range as x-coordinates]
or
Marks and joins at least three points correctly
or
Makes an error in marking one of the points, but follows through correctly for later points, and joins all their points

Gives a value between 1.4 and 1.6 inclusive
or
Follows through from an incorrect total to give the correct median for their graph

Distance from school

Additional guidance

! For $2 m$ or $1 m$, points joined with a curve Condone

! Follow-through

For 1 m , accept the following values as follow-through:

Distance	Cf	f-t
2	19	none
3	25	6 + their 19
4	28	$3+$ their 25
5	29	$1+$ their 28

Equivalent fractions or decimals

! Follow-through

Follow-through can only be given for an increasing graph which reaches $(5, y)$

Coordinates

Mark Correct response

Additional guidance

$!$ Answers for A and B transposed but
otherwise completely correct
If this is the only error, ie
gives A as $(1,-1)$ and
gives B as $(0,-2)$, mark as 0,1

Similar triangles

3-5 4-6 5-7 6-8

Additional guidance

\times For $2 m$ or $1 m$, evidence of accurate or scale drawing, with no other method
$2 m$
3 , with no evidence of accurate or scale drawing
or
1m Shows or implies the ratio 4 : 10
eg

- 0.4 or equivalent seen
- 2.5 or equivalent seen
- $2: 5=$? $: 7 \frac{1}{2}$
- $7.5 \div 10 \times 4$
- 0.75×4
- $30 \div 10$

Tier \& Question
3-5

1m
Gives the four correct letters, ie
B, C, D and E, in any order
1 m Gives the four correct letters, ie
A, B, E and F, in any order

Mark Correct response

1 m Gives the four correct letters, ie
A, B, G and H, in any order
ives the four correct letters, ie

Regions

Average speed

Additional guidance

For $2 m$, minimally acceptable justification
eg

- $4+2=6$ mins for 2 km
- $\frac{1}{15}+\frac{1}{30}=\frac{1}{10}$ for 2 km
x For 2m, incomplete justification
eg
- 1 km at 15 km per hour takes $60 \div 15=4$ mins,
1 km at 30 km per hour takes $60 \div 30=2 \mathrm{mins}$
- 6 mins for 2 km , so it's 60 mins for 20 km which is 20km per hour
! For 1m, total of 6 minutes or equivalent seen As the total of 6 minutes can be calculated from the given 20 km per hour, do not accept as implying 4 minutes and 2 minutes unless a correct method is also seen

Index to mark schemes

Tier				Question	Page
3-5	4-6	5-7	6-8		
1				Circle totals	10
2				Dishes	11
3				Five squares	12
4				Javelin	12
5				Digit cards	13
6				Heights	13
7				Change	14
8	1			Doctors	14
9	2			Using tens	15
10	3			Card shape	15
11	4			Number lines	15
12	5			Rhombus grid	16
13	6			Missing digits	17
14	7			Clocks	17
15	8			Sum of 80	18
16	9			Number chains	18
17	10	1		Making 1	19
18	11	2		T-shirts	19
19	12	3		Water	20
20	13	4		Boxes	20
21	14	5		Percentages	20
22	15	6		Number grids	21
23	16	7		Angles in a triangle	21
24	17	8		Finding b	22

Tier				Question	Page
3-5	4-6	5-7	6-8		
	18	9	1	Matching	22
	19	10	2	Oak leaves	23
	20	11	3	Missing lengths	24
	21	12	4	Counters	25
	22	13	5	Prize money	25
	23	14	6	Correlation	26
	24	15	7	Shape rules	27
	25	16	8	Fortieths	27
	26	17	9	Expressions	28
	27	18	10	Ratio	29
	28	19	11	Powers	29
		20	12	Sorting primes	30
		21	13	Score	31
		22	14	Rhombus	32
		23	15	Sums and products	33
		24	16	Mean	33
		25	17	Simultaneous	34
		26	18	Shape	35
		27	19	Circle shapes	35
		28	20	False	36
			21	Dice probability	38
			22	Solving	39
			23	Distance from school	40
			24	Coordinates	40
			25	Similar triangles	41
			26	Regions	41
			27	Average speed	41

QCA wishes to make its publications widely accessible.
Please contact us if you have any specific accessibility requirements.

29 Bolton Street
London W1J 8BT
Telephone: 08700606040
Minicom: 02075096546
Fax: 02075095908
Email: tests@naa.org.uk Website: www.naa.org.uk/tests

First published 2009
© Qualifications and Curriculum Authority 2009
ISBN 1-84721-699-1

Reproduction, storage, adaptation or translation, in any form or by any means, of this publication is prohibited without prior written permission of the publisher, unless within the terms of licences issued by the Copyright Licensing Agency. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, providing full acknowledgement is given.

Printed in Great Britain by the Qualifications and Curriculum Authority under the authority and superintendence of the Controller of Her Majesty's Stationery Office and Queen's Printer of Acts of Parliament.

The Qualifications and Curriculum Authority is an exempt charity under Schedule 2 of the Charities Act 1993.

Qualifications and Curriculum Authority
83 Piccadilly
London W1J 8QA
www.qca.org.uk

For more copies:

QCA Orderline, PO Box 29, Norwich NR3 1GN
Qualifications and

